Physical and chemical studies on bacterial superoxide dismutases. Purification and some anion binding properties of the iron-containing protein of Escherichia coli B.
نویسندگان
چکیده
Highly purified iron superoxide dismutase was obtained from Escherichia coli B using a modification of the procedure of Yost and Jridovich (Yost, F. J., Jr., and Fridovich, I. (1973) J. Biol. Chem. 248, 4905-4908). The protein contained 1.8 +/- 0.2 atoms of iron per 38,700 g of protein. We have found that cyanide does not bind to the Fe3+ ion of iron dismutase but fluoride and azide have moderately large binding constants. Optical and electron paramagnetic resonance (EPR) measurements suggested that 2 fluoride ions could associate with each iron atom with the first having an association constant of approximately 520 M-1 and the second with an estimated value of 24 M-1. Activity measurements yielded an inhibition constant for fluoride of 30 M-1. At room temperature only one azide binds to the Fe3+ (K = 760 M-1) and this does not interfere with superoxide dismutase activity. Upon freezing solutions of iron superoxide dismutase in the presence of excess azide their color changes from yellow to pink. Combined EPR and optical titrations with azide suggest the presence of two binding sites on Fe3+ with only the first being occupied at room temperature and the second binding azide only upon freezing the solution. The results suggest that each Fe3+ ion of this superoxide dismutase has two coordination positions available for interaction with solute molecules but only one is necessary for catalysis of the superoxide dismutation reaction. The EPR, optical, and circular dichroism spectra of the native protein and the various fluoride and azide complexes are presented.
منابع مشابه
Cloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli
Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...
متن کاملCrystallization and preliminary X-ray diffraction studies of the iron superoxide dismutase from the eukaryote Vigna unguiculata
Superoxide dismutases are a family of metalloenzymes that catalyze the dismutation of superoxide radicals into molecular oxygen and hydrogen peroxide, and thus represent a primary line of defence against oxidative stress. The iron-containing superoxide dismutases are only found in prokaryotes and plants. The iron superoxide dismutase of Vigna unguiculata (cowpea) consists of two polypeptides of...
متن کاملStructure Evaluation of IroN for Designing a Vaccine against Escherichia Coli, an In Silico Approach
Introduction: Some strains of Escherichia Coli, including intestinal pathogenic strains, commensal strains, and extra intestinal pathogenic E. coli (ExPEC) have a significant impact on human health status. A standard vaccine designed based on conserved epitopes can stimulate a protective immune response against these pathogens. Additionally, enhanced expression at the infection site as a pathog...
متن کاملExpression, purification, and immunization of a chimeric protein containing immunogenic regions of flagellin and intimin proteins against E. coli O157: H7
Introduction: Enterohemorrhagic Escherichia coli (EHEC) and serotype O157: H7 is one of the most important diseases causing diarrhea. Shiga-like toxin secreted by the bacteria destroys epithelial cells and, in acute cases, causes hemolytic uremic syndrome (HUS). Antibiotic therapy is not effective against this pathogen, because it increases the production of Shiga toxin. Designing chimeric immu...
متن کاملSequence homologies among bacterial and mitochondrial superoxide dismutases.
Superoxide dismutase from chicken-liver mitochondria (manganese enzyme) and the two dismutases from Escherichia coli (manganese and iron enzymes) were analyzed through 29 cycles of automated Edman degradations. The high degree of homology among the amino-terminal sequences of these three dismutases corroborates their known similarity of structural and functional properties, and serves as furthe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 251 18 شماره
صفحات -
تاریخ انتشار 1976